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Abstract
The evolution of a quantum lattice gas automaton (QLGA) for a single
charged particle is invariant under multiplication of the wave function by
a global phase. Requiring invariance under the corresponding local gauge
transformations determines the rule for minimal coupling to an arbitrary
external electromagnetic field. We develop the Aharonov–Bohm effect in the
resulting model into aconstant time algorithm to distinguish a one-dimensional
periodic lattice from one with boundaries; any classical deterministic lattice gas
automaton (LGA) algorithm distinguishing these two spatial topologies would
have expected running time on the order of the cardinality of the lattice.

PACS numbers: 03.67.Lx, 02.40.−k, 03.65.Pm, 03.65.Ta

Quantum lattice gas automata (QLGA) have been proposed as a possible architecture for
solid state quantum computers since they require only an array of sites which can support an
extended (multi-)electron wave function [1]. The simplicity of such an architecture makes
nanoscale fabrication plausible [2]. The main incentives for pursuing the program of quantum
computation, however, are the quantum algorithms of Shor [3] and Grover [4], for example,
which provide substantial improvements over deterministic or probabilistic algorithms. These
quantum algorithms can be efficiently implemented with quantum gate arrays (see, e.g., [5]),
but at least in simple translations—analogous to deterministic billiard ball models for universal
computation [6]—seem impractical to implement in QLGA models. Just as deterministic LGA
efficiently simulate fluid flow in certain parameter regimes [7], QLGA seem best suited for
simulation of quantum physical processes [1, 8]. Single-particle QLGA have been shown,
in fact, to limit to the Schr̈odinger [9] and Dirac [1] equations under appropriate conditions.
In this paper we show that in simulating a single quantum particle, QLGA efficiently perform
a new and interesting computation—of spatial topology.

We draw inspiration from the topological invariance of the spectral flow in a one-parameter
family of Dirac operators [10]. Spectral flow derives from the components of the group
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of gauge transformations, so after recalling the definition of one-dimensional single-particle
QLGA with inhomogeneouspotentials, we analyse which evolution rules are gauge equivalent.
We find a difference between the gauge equivalence classes of rules on periodic lattices and
lattices with boundary, and show how this may be exploited to distinguish between these
two spatial topologies. We conclude with a discussion of the complexity of this quantum
computation and point out directions for further investigation.

A one-particle QLGA is a discrete time model for a quantum particle moving in an array
(lattice) of sites. Here we will consider only finite one-dimensional latticesL, with or without
periodic boundary conditions. In these cases we need only allow two velocities{±1} in
order to construct a model which limits to the Schrödinger [9] or Dirac [1] equation as the
timestep and lattice spacing scale to zero appropriately. The amplitudes for the particle to
be (left, right)-moving at a lattice sitex ∈ L combine into a two-component complex vector
ψ(t, x) := (ψ−1(t, x), ψ+1(t, x)) which evolves as

ψ(t + 1, x) = w−1(x)ψ(t, x − 1) +w+1(x)ψ(t, x + 1).

Here the weightswβ(x) ∈ M2(C) are 2× 2 complex matrices constrained by the requirement
that the global evolution matrix

U :=




. . .

w−1(x − 1) 0 w+1(x − 1)
w−1(x) 0 w+1(x)

w−1(x + 1) 0 w+1(x + 1)
. . .




(1)

be unitary.
For periodic boundary conditions the top and bottom rows (of blocks) ofU wrap around

and completely homogeneous solutions are possible. We showed in [1] that the most general
parity invariant homogeneous solutions, up to unitary equivalence and an overall unobservable
phase, form a one-parameter family

w−1(x) = w−1 :=
(

0 i sinθ
0 cosθ

)
w+1(x) = w+1 :=

(
cosθ 0
i sinθ 0

)

whereθ scales to the mass in the Dirac equation limit.
Without periodic boundary conditions, the local rule must change at the boundary. We

show in [11] that there is a one-parameter family of (type II) boundary conditions which give
the global evolution matrix the form

U :=




0 w̄+1
w−1 0 w+1

w−1 0
. . .


 (2)

at the left boundary. Here

w̄+1 :=
(

0 0
ieiζ 0

)

for anyζ ∈ R and the right boundary condition is characterized by ¯w−1 obtained by parity
transformation, although with an independent phase. For simplicity we set both phase angles
to zero in the following discussion; this will not affect the relevant features of our result.

The global evolution matrixU acts by left multiplication�(t + 1) = U�(t) on the
wave function�(t) : L × {±1} −→ C. Multiplication of the wave function by an overall
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phase e−iα leaves the quantum state invariant since the phase cancels in any observable
〈�|O|�〉. Requiring invariance of the evolution under the local gauge transformations
e−iα(t,x) corresponding to this global symmetry necessitates modification ofU: setting
ψ ′(t, x) := e−iα(t,x)ψ(t, x), which we write as

� ′(t) := D
[
e−iα(t,x)]�(t) (3a)

we achieve gauge invariance with

U ′(t) := D
[
e−iα(t+1,x)]UD[

eiα(t,x)] (3b)

since

U ′(t)� ′(t) = D
[
e−iα(t+1,x)]UD[

eiα(t,x)]D[
e−iα(t,x)]�(t)

= D
[
e−iα(t+1,x)]�(t + 1)

= � ′(t + 1).

Expanding (3b) we find that the superdiagonal blocks ofU ′(t) are

U ′(t)x−1,x = e−iα(t+1,x−1)+iα(t,x)w+1 (4a)

while the subdiagonal blocks are

U ′(t)x,x−1 = e−iα(t+1,x)+iα(t,x−1)w−1. (4b)

For a periodic lattice,x runs over all the labels{0, . . . , |L| − 1} of the lattice sites and the
indices are interpreted mod|L|. For a lattice with boundaries,x ∈ {1, . . . , |L|−1} since there
are no blocks in the evolution matrix containing nonzero amplitudes for transitions between
x = 0 andx = |L| − 1. Multiplying and dividing each block in columnx (with these same
conventions) ofU ′(t) by eiα(t+1,x), the expressions in (4) can be rewritten as

U ′(t)x−1,x = e−i�tα(t+1,x)+i�xα(t+1,x)w+1 (5a)

and

U ′(t)x,x−1 = e−i�tα(t+1,x−1)−i�xα(t+1,x)w−1 (5b)

where� is the difference operator so�tα(t + 1, x) := α(t + 1, x) − α(t, x) and similarly
for �x . In columnx both the super- and subdiagonal blocks now contain the phase factor
e−i�tα(t+1,x). Recall that when we included an inhomogeneous potential in a QLGA [12] it
also had the effect of multiplying the blocks in columnx by a phase factor, e−iφ(x).1 Thus
the gauge transformation (3) transforms a potentialφ(t, x) to

φ′(t, x) = φ(t, x) +�tα(t + 1, x). (6)

The�xα phases in the gauge-transformed evolution matrixU ′(t) remind us that the
electromagnetic potential has a second component—the vector potentialA. The conjugate
�xα phases of the antidiagonal blocks in (5) indicate that the vector potential enters the
evolution matrix in the same way. That is, in the presence of an electromagnetic potential
(φ(t, x),A(t, x)), the super- and subdiagonal blocks in the evolution matrix are

U(φ,A)(t)x−1,x = e−iφ(t,x)+iA(t,x)w+1 (7a)

and

U(φ,A)(t)x,x−1 = e−iφ(t,x)−iA(t,x)w−1 (7b)
1 Column and row are interchangeable here, corresponding to multiplying by the local potential phase factors before
or after the advection part of each timestep, respectively. The algorithm described in [12] multiplies before, while
those in [9] and [13] do so afterwards. To obtain the expressions corresponding to those in (5), but with a common
�tα phase in each row, we can multiply and divide each block in rowx of U′(t) by eiα(t,x).
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respectively. Notice that for a lattice with boundaries,A(t,0) ≡ A(t, |L|) does not enter
into these expressions for the global evolution, although it does for a periodic lattice.U(φ,A)

describes the discrete version of the usual minimal coupling of a Dirac particle to an external
(classical) electromagnetic field [14]. The conjugate phases from the vector potential are the
consequence of the velocity dependence of this coupling; the vector potential itself transforms
to

A′(t, x) = A(t, x) +�xα(t + 1, x) (8)

under the gauge transformation (3),analogously to the transformation (6) of the scalar potential.
The consequences of this gauge freedom in the vector potential differ for periodic

lattices and those with boundaries: Given any vector potentialA(t, x), consider the gauge
transformation defined by

α(t + 1, x) = −
x∑
y=0

A(t, y). (9)

With this definition,�xα(t + 1, x) = −A(t, x) for 1 � x � |L| − 1 so that using (9) in (8)
gives a gauge transformedA′(t, x)which vanishes except atx = 0. Since the global evolution
on a lattice with boundaries does not depend onA′(t,0), transformation (9) gauge transforms
the vector potential away completely—there is exactly one gauge equivalence class of vector
potentials. On a periodic lattice, however, the global evolution depends onA′(t,0) (mod 2π),
so there is a one (periodic) parameter family of gauge equivalence classes. Alternatively, the
gauge transformation (9) demonstrates that the only gauge invariant quantity which can be
constructed from the vector potential is (a function of)

δ := exp


i

|L|−1∑
x=0

A(t, x)


 (10)

upon which the evolution depends only for a periodic lattice, in which case (10) is the discrete
analogue of a Wilson loop variable/holonomy, i.e., a winding number.

Such a gauge invariant quantity manifests itself in the spectrum of the evolution operator:
as the phaseδ varies, so does the spectrum ofU(φ,A)—if the lattice is periodic, butnot if it
has boundaries. Figure 1 shows an example of this spectral flow [10] for a periodic lattice
with N = 16 andθ = π/6. Hereφ(t, x) has been set to 0 by a gauge transformation, andδ

varies from 0 to 2π . Asδ increases, the frequencies (energies) of positive frequency right/left-
moving plane waves, i.e., the eigenvectors ofU(φ,A), increase/decrease, respectively. When
the ‘mass’θ = 0, half the eigenvalues shift up by 1 and half shift down by 1 asδ varies from
0 to 2π ; the spectral flow (the number of eigenvalues crossing each frequency level) is 2.

To observe such a spectral flow, imagine preparing a quantum particle on a periodic lattice
in a positive frequency, right-moving eigenstate ofU(0,0), but then applying an external vector
potential so that the evolution is byU(0,A) instead, whereA(t, x) ≡ A. A massless particle
will remain in the original eigenstate, but a frequency (energy) measurement at any subsequent
timestep will return the original value plusA = δ/|L|. For a massive (i.e.,θ �= 0) particle,
the initial state is a superposition of the positive and negative frequency eigenstates ofU(0,A)

with the original wave number, but for small masses the positive frequency still dominates so
again a frequency (energy) measurement will return the original value plus an amount on the
order ofA.

Our goal, however, is to distinguish between a periodic lattice and one with boundaries.
Since the single-particle eigenstates differ for these two situations even if|L| is the same [13,
11], without knowing the spatial topologya priori we cannot prepare a quantum particle in an
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Figure 1. Spectral flow in a periodic QLGA with|L| = 16 andθ = π/6. The scalar potential
has been taken to vanish andδ, the gauge invariant degree of freedom in the vector potential, runs
from 0 to 2π .

eigenstate. But we can prepare a positive frequency right-moving wave packet with bounded
support—identically oneither lattice. Subsequent frequency measurements will return a
distribution of frequencies concentrated around the expectation value. This distribution is the
same for either lattice, if the evolution is byU(0,0). But if the evolution is byU(0,A) with
A > 0, say, the observed frequency distribution will be shifted to larger values on the periodic
lattice.

Since some finite, fixed, number of measurements suffices to distinguish these
distributions with probability 1− ε for a given initial wave packet and external vector potential,
the computation takes onlyconstant time, independent of the size of the lattice|L|. In fact, for
larger lattices the initial wave packet can be broader, i.e., more concentrated around its expected
energy, and hencefewer measurements are needed to distinguish the original distribution from
the one shifted by the vector potential in the case when the lattice is periodic. In contrast,
suppose we try to distinguish a periodic lattice from one with boundaries using adeterministic
LGA. Since no superpositions of states are possible, all that we can do is to start a single
particle off in one direction and see if it ever changes velocity by reflecting from a boundary.
To do so the particle must travel forO(|L|) timesteps, on average, so the QLGA algorithm
provides a even greater improvement over the classical algorithm than does Grover’s algorithm
for searching [4].

In conclusion, we remark that our algorithm exploits the Aharonov–Bohm effect [15]
which is more usually discussed in two dimensions—we are imagining creating the vector
potential by applying a magnetic field which threads a (possibly incomplete, in the non-
periodic case) ring of lattice sites. It would be interesting, and potentially useful for pattern
recognition [16], to formulate this algorithm for a two-dimensional QLGA. Preparation of a
localized wave packet, and measurement of its energy, each in constant time, is then plausible
on physical grounds, provided that the lattice lies within some fixed area. For the more realistic
situation of a fixed density of lattice sites (and hence an increasing spatial area with increasing
lattice size) additional analysis is required. As the example of unitary transformations and



6986 D A Meyer

measurements on the Rydberg states of an atom illustrates, careful attention to the details
of the physical implementation of a quantum algorithm is required to correctly quantify its
computational complexity [17]. Although the evolution of the QLGA can be simulated in the
standard poly-local model for quantum computing [18], issues of the time required for state
preparation and measurement, and the adiabaticity required when turning on the magnetic
field, all must be considered before we can claim to understand how this computation scales
physically.
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